National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Development of inhibitors of rhomboid proteases as tools for the study of their biological functions
Tichá, Anežka ; Stříšovský, Kvido (advisor) ; Šedo, Aleksi (referee) ; Konvalinka, Jan (referee)
Rhomboids are intramembrane serine proteases that belong to the evolutionarily widespread rhomboid superfamily. Rhomboids developed a slightly different catalytic mechanism compared to classical serine proteases; they utilise a catalytic dyad (Ser/His) instead of the common triad (Ser/His/Asp), and the rhomboid active site is buried in the membrane. This, coupled with their hydrophobicity, makes them quite difficult to study. Therefore, even though they are known to be involved in several important biological processes it is still not clear how exactly most of them are involved in the regulation of or in the pathologies of diseases related to these processes (such as malaria, Parkinson's disease or cancer). Our understanding is hindered by the lack of tools for their characterisation both in vitro and in vivo. In my thesis I present new fluorogenic substrates based on the LacYTM2 sequence, which is hydrolysed by several different rhomboid proteases. Using Förster resonance energy transfer (FRET)-based methods, these substrates are suitable for continuous monitoring of rhomboid activity in vitro. Modifications in the P5-P1 residues can improve selectivity for a specific rhomboid, the choice of FRET pair of fluorophores that absorbes light of longer wavelengths makes them suitable for high throughput...
Development of inhibitors of rhomboid proteases as tools for the study of their biological functions
Tichá, Anežka ; Stříšovský, Kvido (advisor) ; Šedo, Aleksi (referee) ; Konvalinka, Jan (referee)
Rhomboids are intramembrane serine proteases that belong to the evolutionarily widespread rhomboid superfamily. Rhomboids developed a slightly different catalytic mechanism compared to classical serine proteases; they utilise a catalytic dyad (Ser/His) instead of the common triad (Ser/His/Asp), and the rhomboid active site is buried in the membrane. This, coupled with their hydrophobicity, makes them quite difficult to study. Therefore, even though they are known to be involved in several important biological processes it is still not clear how exactly most of them are involved in the regulation of or in the pathologies of diseases related to these processes (such as malaria, Parkinson's disease or cancer). Our understanding is hindered by the lack of tools for their characterisation both in vitro and in vivo. In my thesis I present new fluorogenic substrates based on the LacYTM2 sequence, which is hydrolysed by several different rhomboid proteases. Using Förster resonance energy transfer (FRET)-based methods, these substrates are suitable for continuous monitoring of rhomboid activity in vitro. Modifications in the P5-P1 residues can improve selectivity for a specific rhomboid, the choice of FRET pair of fluorophores that absorbes light of longer wavelengths makes them suitable for high throughput...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.